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Summary

For a set of survey conditions, the effect of corrclated measurement errors
on ordinary Least-Square (OLS) estimator of the regression coefficient for
a finite bivariate population, when both variables are subject to measurement
errors has been studied. In this work, the expressions for relative bias and
relative mean-square error (m.s.e.) of regression estimates have been
derived. A procedure to use the tables for relative absolute bias and relative
m.s.e. given by Richardson and Wu [5] has been explained.
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Introduction

The data collected in a sample survey may sometimes be subject to
measurement errors. Main sources of measurement €rrors are response errors
but coding and other processing errors may also occur. Fuller [2] has given
practical examples of measurement errors in many areas. Increased application
of the theory of measurement errors has been made in recent years.

However most of the work has been oriented towards the development of
models and their application to univariate cases, under some basic survey
conditions. For a set of survey conditions, the effect of correlated measurement
errors on the OLS estimator of the regression coefficient for a finite bivariate
population, when both variables are subject to measurement errors is studied
here.

2. Survey Conditions, Assumptions and the Model
We consider the followihg basic survey conditions—

(@) A large population of N elementary units is divided into L contiguous
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groups or areas. Each group or area contains N; elementary units and
L

thus, 2 N, =N
im]

(b) A random sample of n elementary units is taken such that n; units are
L

drawn from the i* area. Thus, ¥, n, = n
i=1

(c) Let there be L interviewers assigned at random to each of L areas.

(d)y The survey can be repeated independently under the same survey
conditions.

2.1 Regression model

Chai [1] has used a mathematical model under some survey conditions
for deriving mathematical expressions for the bias factor of the ordinary least
squares estimator of the regression coefficient for the two variable linear model
when both variables are subject to correlated measurement errors. In the present
study, we consider their mathematical model under some different assumptions
and with changed notations. .

Let X0 yUl be the observed values of the variables x and y for the j'h sample
unit of the 1 area at the t trial. The conditional expected values of x and y
given the _] unit of the i™ area are, say

E, (xijtli,j) =X
E(yijlli,j) =Y;

where the expectation is taken over all trials. Following Hansen et al [4], we
define the response deviation for x and y variables given the _] sample unit
of the i® area as follows-:

Sijt = X~ X;

M = Yin— Y

We assume that each of the error terms 8 and 1 follows a normal probability
distribution with mean zero i.e.

El(S-ljtli,j) =0
El(mjl“,j) =0
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and with variance,
T3, = E G 1i.1)
29, .
El(nijtl i,)
We consider the simple linear model given by,

2
Ona,

where o and B are the parameters of the model and Xij and Yij are the conditional
expected values of X5 and Yije
We observe from a sample of n units a set of values X0 and Yije Hence

model (2.1) can be wriiten as-
i = 0+ Bx+ey (2.2)

where, & = My~ B &y

In model (2.2), vector Sijt and My i=12..Lj=12 .. n, ) are
mutually independent and (Eijt’ Sijl
and non-singular var-cov matrix-

2, 22 2
o, +B" 05— P o3

2
—Bog O3

) is bivariate normal with mean vector (0 Q)

% = ( )

where,

p:

We know that the ordinary least-square estimator of B is is given by,

Sxﬂl)

b, =
(O} 2
Sx®
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where s, and sf(l) may be defined as follows :

L

x(l) 2 E (Xul xl)

s")’('-) =5 E z (Xul x)(yUl yl)

where,

' 1L n
;lzl_)zz:xijl
1 J

L n
— 1
VW= " 2 2 Yijt

We shall be using the results derived by Halperin and Gurian [3] which
are sumunarized in the following section.

3. quperin and Gurian’s nole

Let y, = a+PBx+g, x, = E+8,i=1,2...N,N23 where (g, 8)
are independent bivariate normal with zero means, variances 02,7' og and
correlation coefficient p, the gi’s being unknown constants; at least two .of which
are distinct i.e. y,’s are independent drawings from distribution with expectation
o+ B x,, common variance 02, o and B being unknown. They have considered
the case where the vector (si 8.)), i-=1,2,..N is mutually ipdependcnt and is
bivariate normal with mean vector (0 0) and non-singular var-covariance matrix :

. 2
o] PO, O
E=( [ 528)
P O Os O3

To simplify the results, they have used to following notations-

N
N-1=m, z = E (E_,i—Ei)/Zo_g '

=1
and use the usual notation F(a, B, z) for the confluent hypergeometric function

of arguments ¢, B and z.
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Using these notations, their results may be summarized as follows.

) = O |(22 =) g(m m PO

E(b)_[B—pos](me ]lF{z 2+1,z]+ o 3.1

2
2 _ " Oe| O m_ m

E(b_B) _[n__z [ﬂ—posj +0§(1_p) 1F1(2_1’2’Z]+
2

m-3)|p-p2| F[B 2D, (3.2)

P, | 12752 :

4. The Relative Bias of the Regression Coefficient

We can put the results defined in section 3 for model defined in eq. (2.2)
after following substitutions

p = B os
(o, + B op)
ol = o, +p* o3

Using the recurrence relation (Slater) [6],

x F@+1,b+1,x) = b[,F(a+1,b,x)- F,@,bx)]

and- the relation 1F1 (a, a, x) = ¢", we can rewrite the expression defined in
eq. (3.1) as

(o) [9)
E(b) = B[ 1-e2F, [%- L5z H—‘—)o—:[ 1-e™F, [%— 1,%,zﬂ+ po:

The bias of b can be written as

E(b)-B = -e-Z.lFl[%_l,%,z][B_‘:‘]

Further relative bias can be written as

ED-p _ —e".lF{m— 1,22 ][ 1- pos]

2 2

B
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. PO ) L .
But, since 37 = —1, the expression for relative bias will be
5
E(b) - ~ m m
—T“E= —ZCZ-IFI(E_I:E,Z) (41)
Since, e‘z.lF1 %—1,—;—1,2 > 0forz > 0 and m > 1, the relative bias

~of b will be always negative.

Absolute relative bias of b can be derived from Table A-1 of Richardson
and Wu [5] by multiplication factor 2.

In the tables of Richardsod and Wu [5], notation n (defined as N-1) can
be considered as m in our case.

For example, if N = 21,7 = 2| where z = (% ]7} then m = N-1 = 20

and absolute value of relative bias = 0.6360

By employing the asymptotic expansion of F,(a,b,by) for large a and
b, (b-a) and y bounded, we can obtain a large sample approximation to the
relative bias of b.

It can be seen (Slater) [6] that

2
Fy(a, b, by) = e (1+ y)‘“’{ 1- (b";i)(g"j ;)i) +0(Ib1? }

If we put z = [% ]T, then,

B (1+7 1_m(1+7')2

We can see from this expression that to the order of approximation, as
the sample size decreases the absolute value of the relative bias increases.
Further, in the limiting case of m (as m— « ), the absolute value of the relative

2
ED)-B _ -2 { L +0(m™) :|

1+
For example, if m—e

1, absolute relative bias = 1.0000
2, absolute relative bias = 0.6666

T
T
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5. The Mean-Square Error of the Regression Coefficient

We can write the expression for relative m.s.e. using the eq (3.2) as

2

PO%| % o|p(m_,m
05] +0§(1—p) 1F1(2—1’2’Z]

PO m m
+ (m—3)[[5— o J 1F1(7_1'7’ZJ]

After simplifications, we get
Eb-BY _ 4e® | o1 -p") m_,m,
B2 2 || (Boy-po,? 2 b2’
m

+(m_3)p[2 2}

: 2
We note the values of relative mean square error (—BBL can be obtained

2 _ €e°
EO-BF - S [rs—

directly from tables A-2 (a—d) of Richardson and Wu[5] with the proviso that
2 2
o
the tables which are computed for selected values of ——2—8 are taken to be for
€
(Bo—po,)

the same values of o) The values so obtained, when multiplied by
o
€

-pP
4 are values of relative mean square.

For example, if 28 £ =0.25m = 10,7 = 5, relative m.s.e. = 0.4128

o(l-p

2

-To obtain a large sample approximation to the relative m.s.e, we can apply
the asymptotic expansion formula for large m to the Confluent hypergeometric
function as has beén done for relative bias.

We know that,

MSE. _ var(b) _[E(b)-Br’

7R B
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where, for large sample approximation,

4p o1 -p?) L1+ %)
-2 | Boy-po)y1+7) A+7)

' : var(b) = +0(m™)
So, in limiting case, relative m.s.e. will tend to the square of the relative
(B o,-po,)

absolute bias and will not depend upon the factor —; NI
o (1-p)

For example, if 7 = 6, relative m.s.e. = 0 0.0816
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