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Suminary

For a set of survey conditions, the effect of correlated measurement errors
on ordinary Least-Square (OLS) estimator of the regression coefficient for
a finite bivariatepopulation, when both variablesare subject to measurement
errors has been studied. In this work, the expressions for relative bias and
relative mean-square error (m.s.e.) of regression estimates have been
derived. A procedure to use the tables for relative absolute bias and relative
m.s.e. given by Richardson and Wu [5] has been explained.
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Introduction

The data collected in a sample survey may sometimes be subject to
measurement errors. Main sources of measurement errors are response errors
but coding and other j)rocessing errors may also occur. Fuller [2] has given
practical examples of measurement errors in many areas. Increased application
of tlie theory of measurement errors has been made in recent years.

However most of the work has been oriented towards the development of
models and tlieir application to univariate cases, under some basic survey
conditions. For a set of survey conditions, tlie effect of correlated measurement
errors on the OLS estimator of tlie regression coefficient for a finite bivariate
population, when both variables are subject to measurement errors is studied
here.

2. Survey Conditions, Assumptions and the Model

We consider tlie following basic survey conditions-

(a) A large population of N elementary units is divided into L contiguous
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groups or areas. Each group or area contains N; elementary units and
L

thus, Ni = N
i- 1

(b) A random sample of n elementary units is taken such that n, units are
L

drawn from the i'*' area. Thus, n; = n
i-i

(c) Let there be L interviewers assigned at random to each of L areas.

(d) The survey can be repeated independently under the same survey
conditions.

2.1 Regression model

Chai [1] has used a mathematical model under some survey conditions
for deriving mathematical expressions for the bias factor of the ordinary least
squares estimator of the regression coefficient for the two variable linear model
when both variables are subject to correlated measurementerrors. In the present
study, we consider theirmathematical model under some different assumptions
and with changed notations.

Let x.jj, y^jj be tlie observed values of the variables xand yfor the j"' sample
unit of tlie i" area at the t"" trial. The conditional expected values of x and y
given the j"' unit of the i"" area are, say

where the exi)ectation is taken over all trials. Following Hansen et al [4], we
define the response deviation for x and y variables given the j*^ sample unit
of the i"' area as follows :

iiijt = yiji-Yij

We assume that each of the error terms 8 and ti follows a normal probability
distribution with mean zero i.e.

i, j) = 0

E,(TlijJi,j) = 0
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and with variance,

4i.j) = E,(5^,li.j)

We consider the simple linear model given by,

Y.. = a + px.. (2.1)

where a and (3 are the parameters ofthe model and X.. and Yj. are the conditional
expected values of and y.j^.

We observe from a sample of n units a set of values x.^.^ and y.j^. Hence
model (2.1) can be wriUen as-

Vij-t = a+px.., +e., (2.2)

where, e,.^ = _ (3 8;^,

In model (2.2), vector 5.^.^ and(i = 1, 2. . . L, j = 1, 2. . . U; ) are
mutually independent and (e.^.^, 5^^) is bivariate nonnal with mean vector (0 0)
and non-singular var-cov matrix-

' ol '
where,

N.

If p is tlie correlation coefficient between 5;^ and Ej^., then.

T1

We know that the ordinary least-square estimator of B is is given by,

b - ^
\(X)
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where and s^(j) may be defined as follows :

Sx(l)
i j

L "i

^xyd) - (yijl^Vl)
i j

where,

^=1i i •'ii.
1 j

, L "i

Vt =^Z E yiji
i j

We shall be using the results derived by Haliwrin and Gurian [3] which
are summarized in the following section.

3. Halperin and Gurian's note

Let y, = a+pXi +Ei, X; = ^ +5i,i = 1,2,...N, N > 3 where (&, 5.,)
are independent bivariate nomial with zero means, variances Og and
correlation coefficient p, the |j's being unknown constants; at least two of which
are distinct i.e. y/s are indei)cndent drawings from distribution with expectation
a +pXj, common variance a^, a and p being unkiiown. They have considered
the case where the vector (e, 5.,), i = 1,2,.. Nis mutually indei)endent and is
bivariate normal withmean vector(0 0) and non-singular var-covariance matrix :

xm"- ""'I')
P Oe Og Og

To simplify the results, they have used to following notations-
N

N-1 = m, z = (^-?i)/2Q8
i = l

and use Uie usual notation jF,(a, P, z) for the confluent hy|iergeometric function
of arguments a, P and z.
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Using these notations, their results may be summarized as follows.

E(b) = P-P:r
Os

^e-
ni

/
m my.y-M.ziFi

POe
(3.1)

E(b-p)' =
m-2 +^a-p') iFi

m , m
+

(m-3)
m - m

(3.2)

4. The Relative Bias of the Regression Coefficient

We can put the results defined in section 3 for model defined in eq. (2.2)
after following substitutions

z = S S (Xij-X)V2a^
i=i j=i

Pcfg

"1 = +
Using tlie recurrence relation (Slater) [6],

X ,Fi(a +l,b+l.x) = b[,F,(a + l,b, x)-iF,(a,b,x)]

and the relation jFj (a,a, x) = e*, we can rewrite the expression defined in
eq. (3.1) as

E(b) = P -iF.
m , m

y-l.y.^

The bias of b can be written as

E(b)-p =-e-^,F,

Furtlier relative bias can be written as

po. m , m

m , my-l.j.z P-
pa.

E(b)-P _ _,-z p m , my-l.y.z 1-
P^

Pog

po.
+ -



MEASUREMENT ERRORS ON LEAST SQUARES ESTIMATORS

p
But, siuee — = -1, the expression for relative bias will be

E(b)-P _ _2e- F(3 - ^ -1^1
m , m

295

(4.1)

Since, e .jFj

of b will be always negative.

ni , m
> Oforz > 0 and m > 1, the relative bias

Absolute relative bias of b can be derived from Table A-1 of Richardson

and Wu [5] by multiplication factor 2.

In the tables of Richardson and Wu [5], notation n (defined as N-1) can
be considered as m in our case.

For example, if N = 21,.t = 2 where z
in

2

and absolute value of relative bias = 0.6360

By employing the asymptotic expansion of jFjCa, b, by) for large a and
b, (b-a) and y bounded, we can obtain a large sample approximation to the
relative bias of b.

It can be seen (Slater) [6] that

then m = N-1 =20

,F,(a,b.by) = e'̂ (1 +y) '̂'̂ ' .l_('̂ a)(l^a+l)y^_^Q^H^,-2
2b(l+y)^

If we put z =
m

2
T, then.

E(b)-P ^ -2
P (1 + t)

1-
2t^

m(l + if
+ 0(m-^)

We can see from this expression that to the order of approximation, as
the sample size decreases the absolute value of tlie relative bias increases.
Further, in the limiting case of m (as m-) ), the absolute value of the relative

' 2
bias tends to the factor

1+T

For example, if m->oo

T = 1, absolute relative bias = 1.0000
T = 2, absolute relative bias = 0.6666
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5. The Mean-Square Error of the Regression Coefficient

We can write the exj^ression for relative m.s.e. using tlie eq (3.2) as

E(b-p)' =
m-2

P-
Or

iF.
m , m

+ (m-3)

After simplifications, we get

1 +

13-
P^e

iFi
m , my-l.y.z

E(b - (3)^ ^ 4e"
(3' (ni-2)

' ola-p')
(pog-po,)

+ (m-3) ,F,

.Fi

/

m - m

m , ...m

We note the values of relative mean square error can be obtained

directly from tables A-2 (a-d) of Richardson and Wu[5] with the proviso tliat

P ^5
the tables which are comi^uted for selected values of —^ are taken to be for

0.

tlie same values of
(PypPe)'
olil-p')

. The values so obtained, when multiplied by

4 are values of relative mean square.

pa, - po
For example, if 7- - 0.25, m = 10, t = 5, relative m.s.e. = 0.4128

<(1 - p^)

To obtain a large sample ajiproximation to the relative m.s.e, we can apply
tJie asymptotic exijansion fomiula for large m to the Confluent hyi)ergeometric
function as has be^n done for relative bias.

We know that,

M.S.E. ^ var(b) [E(b)-pf
P' f P'
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where, for large sample approximation,

o'(l-p') ^t(1+t')
(pag-pa/d +T) (1 +t)'

+ 0(n-^)

So, in limiting case, relative m.s.e. will tend to Uie square of Uie relative

absolute bias and will not depend upon tlie factor —:r
0^(1 - p )

For example, if t = 6, relative m.s.e. = 0 0.0816
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